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As far as crystal growth is concerned, electrolytes differ from nonelectrolytes in several aspects, of which the most 
important are that a growth unit consists of more than one particle, and that interactions between ions are of long range. 
This raises questions about the validity of current theories and calls for modifications of kinetic expressions. On the other 
hand, electrolyte systems offer possibilities of convenient experimental methods such as recording of electrical conductance 
or electrode potentials during a crystallization process. Practical examples from studies of sparingly soluble carbonates and 
phosphates are presented and discussed. 
 
(Received August 5, 2008; accepted October 30, 2008) 
 
Keywords: Electrostatic interactions, Edge free energy, Spiral growth, Surface nucleation, Conductometry, pH recording 
 
 
 

1. Introduction 
 
When theories of crystal growth kinetics were first 

established, they were based on nonelectrolytes. There are 
two obvious reasons for that: first, that in this case growth 
units are single molecules, and second, that interactions 
between neutral molecules fall off with distance so quickly 
that it is a reasonable approximation to consider only 
interactions between nearest neighbours in the crystal. A 
growth unit of an electrolyte consists of at least one cation 
and one anion like e.g. AgCl or BaSO4, and often more, 
for instance a total of 9 for apatite, Ca5OH(PO4)3. The 
electrostatic interaction between ions is of much longer 
range than the interaction between neutral molecules, 
which is furthermore always attractive except at very close 
approach, whereas ions of the same sign, as well known, 
repel each other. This makes the nearest-neighbour 
approximation very poor for electrolyte crystals. 

 

 
Fig.  1. Growing crystal. 

 
 

We may illustrate the situation by considering a 
growing crystal with simple cubic structure (Fig. 1). When 

a growth unit or single ion is adsorbed at a regular lattice 
position on the terrace, it has 1 nearest neighbour, at the 
step it has 2 and at the kink (growth site) 3. If the nearest-
neighbour interaction energy is φ (< 0), then the potential 
energies at the three sites are φ, 2φ and 3φ, respectively, in 
the nearest-neighbour approximation. For a single ion on a 
(100) face of an ionic crystal with NaCl structure Kossel 
[1] and Stranski [2] found the corresponding values 
0.0662φ, 0.1807φ and 0.8738φ. For a whole growth unit, 
i.e. a pair of ions at neighbouring sites, the values are 
1.1324φ, 1.3614φ and 1.7476φ. These values include 
purely electrostatic interactions only; a precise treatment 
should consider Born repulsion and dispersive and 
vibrational energies as well [3,4]. Finally, since electrolyte 
crystals often grow from aqueous solution, crystal-water 
interaction is important too [5,6]. 

With electrolytes of low solubility additional 
problems arise. First, such crystals often require much 
higher supersaturation to grow at a measurable rate than 
crystals of a highly soluble substance like NaCl or 
KH2PO4. This fact invalidates certain approximations 
frequently made to simplify kinetic analyses. For instance, 
the approximation ln β ≈ β - 1, where β is the saturation 
ratio (to be defined precisely below) is in error by more 
than 50 % for β > 2.15, which is a rather low 
supersaturation for a sparingly soluble electrolyte. Second, 
solutions from which crystal growth takes place need not 
be congruent, i.e. contain the ion constituents in the same 
proportion as in the crystal. Crystal growth kinetics of a 
biologically important compound like apatite, of which the 
growth unit consists of 5 Ca2+, 3 PO4

3- and 1 OH-, is of 
interest chiefly in neutral medium (pH ≈ 7), where the 
dominating phosphate species are H2PO3

- and HPO4
2-, and 

the concentration of hydroxide ion is very low. 
Furthermore, in actual biological fluids the total phosphate 
concentration is often higher than that of calcium. This 
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forces us to focus on the question of rate-determining step 
with particular emphasis on the ionic species which limits 
growth rate. 

On the other hand, electrolytes offer experimental 
methods not available for nonelectrolytes. Measurements 
of electrochemical properties like electrical conductance 
and electrode potential are particularly useful in mass 
crystallization experiments. In addition to a short account 
of such methods, the aim of the present contribution is to 
point out where and how current theories of crystal growth 
should be revised to account adequately for the growth of 
electrolyte crystals. Not everything that follows is novel, 
but the implications of specific electrolyte properties are 
often ignored even in recent work. 

 
 
2. Basic theory of crystal growth from  
     solution 
 
The rate of growth R of a crystal is the velocity of 

advancement of a crystal face in the direction 
perpendicular to the face. If the crystal habit includes more 
than one form (set of symmetrically equivalent faces), 
different faces will normally have different growth rates. 
In a mass crystallization experiment the result will 
typically be an average growth rate. 

 
2.1 Thermodynamics of dissolved electrolytes 
 
The driving force for crystal growth from solution is 

the excess of chemical potential of the crystallizing solute 
over that of the crystal: 
 

cμμμ −=Δ                      (1) 
 
where the chemical potential of an electrolyte equals the 
sum of the potentials of its ion constituents. Let the 
chemical formula be MmXx, then 

              
xm aaRTxmxm XM

O
X

O
MXM ln++=+= μμμμμ    (2) 

 
where μM

O and μX
O are the standard chemical potentials 

and aM and aX the activities of the ion constituents in 
solution. In a saturated solution the chemical potential 
equals μc, and the ion activity product is the solubility 
product Ksp. If we define the saturation ratio β by 
 

μβ Δ=lnRT                        (3) 
 
we have 
 

sp

XM

K
aa xm

=β                               (4) 

 
Often supersaturation is expressed as mean saturation ratio 
per ion constituent, S. It is related to β by 
 

xmS +=β                                   (5) 
 
For nonelectrolyte systems β and S are identical, and for a 
congruent solution S may be taken as the actual 
concentration of the electrolyte divided by its solubility, 
provided that the activity coefficients in the actual 
solutions are nearly equal to those of the saturated 
solution. This is often a reasonable assumption for highly 
soluble substances. Another way to determine S in such 
cases is to use the approximate relation [7] 
 

T
RT

HS Δ
Δ

= 2
eq

solln                      (6) 

 
where the numerator is the integral heat (enthalpy) of 
solution of 1 mol of solute in the amount of solvent to give 
the actual concentration, and ΔT is the supercooling in K 
below the saturation temperature Teq. 
 

2.2 Kinetic growth laws 
 
It is sometimes found that the growth rate R of a 

crystal is proportional to the relative supersaturation σ = S 
- 1 in a range of supersaturations. This is termed the linear 
growth law and is normally interpreted as the consequence 
of a high degree of roughness of the crystal surface, 
making volume diffusion the rate-determining step. Two 
other basic laws are generally recognized: the "parabolic" 
and the "exponential" law. The former draws its name 
from the fact that R is often proportional to σ2 at low 
supersaturation. It is connected with the presence on the 
crystal face of a spiral-shaped step, a growth spiral, arising 
from a screw dislocation in the crystal. The theory of this 
growth mechanism was established by Burton, Cabrera 
and Frank [8] (BCF) and further developed by Chernov 
[9], Gilmer, Ghez and Cabrera [10], Bennema and Gilmer 
[11] and van der Eerden [12], among others. These 
versions of the theory of spiral growth all predict both first 
order (linear) and second order (parabolic) dependence of 
growth rate on relative supersaturation. Some of the 
special, limiting cases yield, however, an expression of the 
form 
 

( ) ββ ln1−= bR                            (7) 
 
which for sufficiently low supersaturations may be 
approximated to R = bσ2. b is a temperature-dependent rate 
constant. 

The "exponential" law is a consequence of the 
mechanism of crystal growth by surface nucleation on a 
perfect crystal face or between the steps of a growth spiral. 
Nucleation means the formation of nuclei, which are 
groups or "islands" of growth units in contact with each 
other, but separated from other such groups. A small 
nucleus is unstable and will tend to dissolve, a large 
nucleus will tend to grow, and between the two is the 
critical nucleus, which is in unstable equilibrium with the 
surrounding medium. Its size is related to supersaturation 
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through the two-dimensional Gibbs-Kelvin equation 
 

     ∗=
r
skT λβln                       (8) 

 
where λ is the edge free energy of the nucleus, i.e. the 
Helmholtz free energy per unit length of a monomolecular 
step, is the area occupied by one growth unit at the 
crystal surface and r* is the radius of a circular nucleus or 
half the edge length of a square nucleus. This quantity 
further determines the distance y0 between steps of a 
growth spiral; we have 
 

∗= ry 190                          (9) 
 
for both rounded and polygonized spirals [13,14]. The 
theory of surface nucleation dates back to the classical 
works of Becker and Döring [15] and of Volmer [16]. It 
was further developed for crystal growth from the vapour 
by Kaischev [17], whose expression for the frequency per 
unit area of two-dimensional nucleation per unit area on a 
crystal surface may be written 
 

                                  

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

β
λββ

ln
expln 2

2
2/1

1 kT
sgkJ             (10) 

 
where g is a geometric factor equal to 4 for a square 
nucleus and π for a circular nucleus. 

If only one growing embryo were present on the 
crystal face at a time, then growth rate R would be 
proportional to the rate of two-dimensional nucleation as 
given by (10); this case is known as the mononuclear 
mechanism. However, R would also be proportional to the 
area of the face, meaning that crystal growth would 
accelerate with increasing crystal size. Such behaviour is 
not normally observed. To solve this problem Hillig [18] 
proposed for crystal growth from the melt the polynuclear 
mechanism, where several growing nuclei are present on 
the crystal face at the same time. R is then determined by 
both rate of nucleation J and rate of advancement v of 
growth steps across the crystal face, and we have 
 

dvJR 3/23/1
3/1

3
4
⎟
⎠
⎞

⎜
⎝
⎛=                   (11) 

 
where d is the thickness of a growth layer. From this 
relation Simon, Grassi and Boistelle [19] established for 
crystal growth from solution an expression which may be 
written 
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Nielsen obtained a similar expression, but with β replaced 

by S and the first factor to the power of 7/6 instead of 1/3 
[20]. 
As already indicated above, surface nucleation may take 
place on a perfect crystal face as well as between the steps 
of a growth spiral. The resulting growth rate is not simply 
the sum of the contributions from spiral growth and from 
surface nucleation. Instead, they combine according to 
Gilmer's equation [21] 
 

  1s
3

33
n =+

d
R

d
R ττ

                      (13) 

 
where Rn is the growth rate by surface nucleation only, and 
Rs is similarly the rate of spiral growth only. τ is the time it 
takes to fill completely a layer of thickness d; thus, the 
overall growth rate equals R = d/τ. 
 

2.3 Traditional approaches 
 
It is not uncommon to see the term "parabolic" for the 

kinetic law of spiral growth taken literally. R is plotted as a 
function of S - 1 in a log-log plot and kinetics determined 
from the slope of the plot: 1 means linear law (rough 
surface), 2 means parabolic law (spiral growth), and a 
higher value means exponential law. This must be 
regarded as an oversimplification of crystal growth 
kinetics, which often leads to false conclusions. As a 
practical example we may consider the crystal growth 
kinetics of the cadmium phosphate Cd5H2(PO4)4,4H2O 
(Fig. 2), determined by mass crystallization experiments 
[22,23]. The growth unit consists of 9 ions: 5 Cd2+, 2 
HPO4

2- and 2 PO4
3-, so β = S9. The slope of the dotted line 

marked "linear" is 1 and that of the dashed line marked 
"parabolic" is 2. 
 

 
Fig.  2. Log-log plot of growth kinetics of cadmium 
phosphate crystals. Squares: experimental points. Full 
line:  best  fit f or  spiral  growth according to theory (see  
                                             text). 

 
 

It is evident from the graph that there is a change in 
kinetics above S ≈ 3. It is also evident that neither the 
linear nor the parabolic growth law fits the experimental 
data. The expression for the curve of best fit will be given 
in the next section. 

s
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Fig.  3. Similar to Fig. 2, results from another 
experiment. Full line: best fit for surface nucleation 
kinetics (see text). Dashed  and  dotted  lines:  linear  fits. 

 
 

An example of the "exponential" law is shown in          
Fig. 3. The nonlinear dependence is evident. However, if a 
linear fit is made for the 7 points at highest supersaturation 
(dotted line), a slope not significantly different from 2 is 
found. This clearly illustrates the risk of false conclusions 
using this method. 

A more rational approach in mass crystallization 
involves the notion of chronomals (chronometric integrals) 
originally introduced by O'Rourke and Johnson [24] and 
further developed by Nielsen [25,26]. However, its 
practical use is often based on simplyfying assumptions 
like those of the log-log plot, and generalizations are not 
straightforward [27]. 

 
 
3. Electrolyte crystal growth 
 
We shall now consider in detail the problems and 

possibilities outlined in the Introduction, starting with a 
short account of the available experimental methods and 
then continue with modifications of the theory to deal with 
crystal growth of electrolytes. Assuming that we can take 
over the form of the rate expressions listed above, the 
primary question will be where to replace β by another 
quantity, e.g. S or a concentration or activity of a dissolved 
species. To solve this problem, it will be useful to group 
the occurrences in two categories: those of thermodynamic 
and those of kinetic origin. 

 
3.1 Experimental methods 
 
When highly soluble electrolytes are concerned, the 

methods used for studying crystal growth are essentially 
the same as those used for nonelectrolytes. One of the 
most frequently used methods consists in placing a seed 
crystal in a solution made supersaturated by cooling a 
saturated solution. Growth of the crystal is followed by 
direct observation through a microscope, often combined 
with measurement of birefringence [28] or use of contrast 
methods permitting observation of growth spirals on the 
growing crystal [29,30]. Additional information may be 

obtained from in situ x-ray topography [31] or 
interferometry [32,33]. In recent years in situ atomic force 
microscopy (AFM) has gained importance [34,35]. 

For sparingly soluble electrolytes sufficient 
supersaturation is not readily attained by changing the 
temperature of a saturated solution. Instead, two solutions 
are mixed, one containing the cation, the other the anion of 
the crystallizing substance, such as AgNO3 and NaCl to 
produce AgCl, and BaCl2 and Na2SO4 for BaSO4. 
Furthermore, it is usually rather difficult to obtain a single 
crystal of such a size that it can be handled and mounted in 
a crystal growth cell. Most studies of crystal growth 
kinetics of sparingly soluble electrolytes are carried out as 
mass crystallization experiments, where a very large 
number of growing crystals is involved. Since ions leave 
the solution to enter the crystals, the electrical conductance 
decreases in the course of the process, which may 
accordingly be followed by conductometry. Fig. 4 shows 
how conductance κ varies when solutions of Ca(OH)2 and 
HF are mixed to form fluorite, CaF2 [36]. 

 

 
Fig.  4. Recorded conductance values in mass 

crystallization experiment with fluorite. 
 
 

Another possibility exists for salts of weak acids 
crystallizing from neutral or acid solution, where the anion 
is protonized. For instance, the cadmium phosphate 
mentioned above crystallizes according to the reaction 
scheme 
 
 5 Cd2+ + 4 H2PO4

- + 4 H2O → Cd5H2(PO4)4,4H2O + 4 H+ 
 
and the protons liberated in the process will lower pH of 
the solution. Knowing the solubility product of the 
crystallizing phase and the dissociation constants of 
phosphoric acid as well as other relevant equilibrium 
constants of the system, it is possible from the recorded 
pH values to calculate the residual supersaturation and the 
amount of solid crystallized at any time during the process. 
Fig. 5 shows recorded pH values versus time for the 
experiment, of which the kinetic results are illustrated in 
Fig. 2 [23]. 
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Fig.  5. pH recording in cadmium phosphate 
crystallization experiment. 

 
 

Crystal growth may be initiated either by free 
crystallization, in which solutions are mixed and the 
growth of the crystals actually formed is studied, 
represented by the above studies of fluorite and cadmium 
phosphate, or by seeding, i.e. adding to a supersaturated 
solution a sample of well-characterized crystals. The latter 
is often combined with the constant-composition method, 
in which reagents are added to the system such as to 
compensate exactly for the consumption of solute by the 
growing crystals [37]. A particularly simple example of 
this method is the study of crystal growth of octacalcium 
phosphate, Ca4H(PO4)3,2.5H2O, by seeding a suspension 
of brushite, CaHPO4,2H2O, in very dilute phosphoric acid 
[38]. Brushite being the most reactive of the sparingly 
soluble calcium phosphates, it could be assumed that the 
solution was always saturated with respect to this 
compound. The progress of crystal growth was followed 
by pH-static titration with calcium hydroxide solution; the 
overall reaction is 
 

6 CaHPO4,2H2O(s) + 2 Ca(OH)2(aq) → 
2 Ca4H(PO4)3,2.5H2O(s) + 11 H2O(l) 

 
The system comprises 3 components (c), viz. 

Ca(OH)2, H3PO4 and H2O, and 2 phases (p) in equilibrium, 
i.e. solution and solid brushite, whence the number f of 
degrees of freedom according to Gibbs' phase rule 
 

pcf −+= 2                       (14) 
 
is f = 3. Two variables with definite values are pressure 
and temperature. Hence, when pH is fixed the composition 
of the solution is constant, and the rate of consumption of 
calcium hydroxide represents the rate of crystal growth, at 
least as long as the number of growing crystals is constant 
and they grow homothetically, i.e. without change of 
shape. This latter may be the weak point, not only in 
seeded crystallization, but in all methods of mass 
crystallization. In experiments with seeding it is often 
observed that the apparent growth rate decreases with 
time, so a decision has to be made as to which rate be 
taken as representative. In the work described the initial 

rate was chosen. 
 

3.2 Thermodynamic factors 
 
A look at the equations (3), the definition of β, and 

(8), the Gibbs-Kelvin equation, points to ln β in growth 
rate expressions to be of thermodynamic origin. ln β may 
be replaced by (m + x) ln S (according to (5)) in (7), the 
equation for spiral growth, and in the preexponential 
factors in (10) and (12), the expressions for surface 
nucleation, incorporating the factor m + x in the constants 
b, k1 and k2. The same substitution in (8) as well as in the 
exponents of (10) and (12) means that should be 
redefined as the average area occupied by an ion in the 
growth layer. 

The factor β in (10) accounts for assumed equilibrium 
between the supersaturated solution and the adsorbed 
growth units, and it leads to the factor β1/3 in (12). It equals 
the ratio between actual and equilibrium surface 
concentration. Since in the electrolyte case β equals a 
product of ion activities divided by the solubility product 
according to (4), it must be replaced in this connection        
by S. 

 
3.3 Kinetic factors 
 
The last supersaturation-dependent factor in the 

kinetic expressions is β - 1. It is connected with the rate of 
advancement of steps. Unlike the thermodynamic factors 
considered above, we cannot give a general expression to 
replace β - 1, because we do not know in advance for a 
specific electrolyte which ion is rate-determining in step 
advancement. Christoffersen, Dohrup and Christoffersen 
studied crystal growth and dissolution of apatite [39] and 
found calcium ion to be rate-determining, though with 
some additional influence from the rate of dissociation of 
water molecules, providing the hydroxide ions of the 
apatite crystals. Ignoring the latter effect, β - 1 should be 
replaced by the difference between the concentrations of 
calcium in the actual and the saturated solution, in general 
terms cM - cM,eq. 
The resulting equations are 
 

( ) βlneqM,M ccbR −=        (15) 
 
for spiral growth and 
 

                    

( ) ( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=

β
λβ

ln3
expln 2

2
6/13/2

eqM,M
3/1

2 kT
sgccSkR   (16) 

 
for polynuclear growth. The validity of the substitution 
made here will be discussed later. 
 

3.4 Strategy of kinetic analysis 
 
We assume that growth rates for different solution 

compositions have been measured. Tests for the different 

s
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growth laws are then carried out: 
1. Plot R against S - 1. If the plot is linear, volume 

diffusion may be rate-determining. This may be checked 
by estimating diffusive mass transport. If this predicts a 
much higher growth rate than that found experimentally, 
the limiting cases leading to linear laws of the BCF theory 
and its extensions [8-12] should be considered. Thermal or 
kinetic roughening are alternatives. 

2. Plot R against (cM - cM,eq) ln β, eq. (15). If the plot 
is linear, the growth mechanism is likely to be spiral 
growth. Either surface diffusion or integration into the 
growth site may be rate-determining. In the former case, 
known as the primary law, transition to linearity at higher 
supersaturation may be observed according to the BCF 
theory. 

3. Divide R by the three supersaturation-dependent 
factors in front of the exponential in (16) and plot the 
logarithm of the result against 1/ln β. If the plot is linear, 
the growth mechanism is surface nucleation, and the edge 
free energy may be determined from the slope of the plot. 

4. If in item 3 only a part of the plot corresponding to 
the high range of supersaturation is approximately linear, 
another mechanism operates together with surface 
nucleation, probably spiral growth if the slope is lower for 
the rest of the plot. Use is then made of the fact that the 
rate of growth by surface nucleation is negligibly low at 
low supersaturation, as is evident from Fig. 3. Rs is given 
by (15), and following the determination of the rate 
constant b from growth rates in the low range, it is 
calculated for the whole range of supersaturations. The 
results are inserted in (13), which is finally solved for Rn, 
given by (16). 

5. If none of the above yields satisfactory linearity of 
the plots, other substitutions for β - 1 may be tried. 

Valuable information on growth mechanisms is 
obtained if the system studied exhibits both spiral and 
surface nucleation growth kinetics, in particular if absolute 
growth rates have been determined. In mass crystallization 
this necessitates knowledge of crystal size distribution. 
Information on temperature dependence of rate constants 
(activation energy) is of great value as well. 

 
 
4. Practical examples 
 
 The simplified Christoffersen theory and its 

generalization to spiral growth, expressed in eqs. (15) and 
(16), have turned out to account well for the crystal growth 
kinetics of cadmium phosphate [22,23], the copper 
phosphates Cu2OHPO4 (libethenite) and CuHPO4,H2O 
[40] and brushite [41]. These substances were all studied 
by free crystallization, and pH was recorded during the 
process. Fig. 6 shows the data of Fig. 2 plotted according 
to item 2 above, including only the low range of 
supersaturations, and Fig. 7 shows the data of Fig. 3 
plotted according to item 3. Both plots are linear within 
experimental uncertainty, indicating spiral growth and 
growth by surface nucleation, respectively. 

 
Fig.  6. Crystal growth rates of cadmium phosphate at 

low supersaturation plotted according to (15). 
 

 
Fig.  7. Cadmium phosphate crystal growth rates plotted 
according to (16). The divisor f is the expression in front 

of the exponential. 
 
 

As far as crystal growth is concerned, cadmium 
phosphate is a relatively uncomplicated substance to work 
with. For a substance with such low solubility it readily 
forms well-developed crystals, which means that crystal 
size distribution can be determined with simple methods of 
optical microscopy, and absolute growth rates are easily 
obtained. In the study of seeded growth of octacalcium 
phosphate in brushite suspension [38] the situation is 
somewhat different. The observed kinetics includes both 
spiral growth and surface nucleation, but for the latter it 
has not yet been possible to find an expression of the form 
(16) or (12) which could be fitted to the data in a 
satisfactory way. Instead the ad hoc solution of writing the 
preexponential factors as [Ca2+]cP was chosen, the second 
factor being the total concentration of phosphate. 
Extensive analysis including temperature dependence of 
spiral growth led to the conclusion that the rate-
determining step is the integration into the step of a growth 
unit with a time constant of the order of seconds. This 
corresponds quite well to the rate of dissociation of a 
proton from a hydrogen phosphate ion in solution [42]. 

 
5. Discussion 
 
There are good reasons for assuming that metal ions 

are responsible for the rate-determining step in electrolyte 
crystal growth, at least with sparingly soluble electrolytes. 
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Nielsen analysed crystal growth kinetics of a large number 
of electrolytes and was able to express the growth rate in 
terms of the rate constant for integration of growth units 
into steps [20]. He could then demonstrate a good 
correlation of this quantity with the rate constant for 
dehydration of the metal ion, which ranges from 3×10-8 s-1 
for Rh3+ and 5×10-7 s-1 for Cr3+ to 1010 s-1 for Ag+, Tl+ and 
Pb2+. On the average, integration was found to be 1000 
times slower than dehydration. The extremely low value 
for Cr3+ manifests itself in the very low rate of the 
transformation 
 

CrPO4,6H2O → CrPO4,4H2O + 2 H2O 
 
which takes several days [43,44]. 

The fact that the rate of crystal growth depends on 
metal ion concentration according to (16) does not exclude 
proton transfer as rate-determining, as the work of 
Christoffersen et al. shows [39]. Other evidence for the 
importance of this process was found in a study of the 
effect of magnetic field on the crystallization of sparingly 
soluble salts of both strong and weak acids [42]. An 
accelerating effect was found only for the latter, and only 
when the metal ion was diamagnetic. Further support was 
obtained by showing the absence of a magnetic effect on 
calcium carbonate crystallization at high pH, where CO3

2- 
dominates over HCO3

-, and in heavy water [45]. Cadmium 
phosphate showed the effect too, as expected [46], and still 
the dependence on metal ion concentration agreed with 
(16). A preliminary theory [47] suggests the explanation 
that approaching metal ions drive protons in the surface 
layer away from growth sites. 

The case of seeded growth of octacalcium phosphate 
in brushite suspension [38] is still in need for a plausible 
mechanism as far as the preexponential factors in the 
expression for surface nucleation are concerned. 
 

 
 

Fig.  8. Electrostatic edge energy Uλ of a surface nucleus 
on a crystal with NaCl structure. Size is given as number 

of ions, and φ is the energy of a pair of neighbouring 
ions. 

 
 

Another problem is the size of the critical nucleus. Its 
size, expressed in number of growth units, may be derived 
from (8) and is given by 

( )2
2

ln β
λ

kT
sgN =∗                              (17) 

 
For the results plotted in Figs. 3 and 7 we have λ = 

26.4 pJ/m and N* ranging from 1 to 7, taking g = 4 (square 
nucleus). Such a range of sizes of critical nuclei is not 
uncommon for crystal growth of sparingly soluble 
electrolytes by surface nucleation. However, considering 
the long range of electrostatic interactions, this small size 
raises the question of validity of the theory, at least so far 
as a definite value of λ is concerned. 

The case may be elucidated by considering a small 
surface nucleus on a crystal-vacuum interface. The nucleus 
is thought as being built up by moving ions one by one 
from the growth site to the nucleus. The work equals the 
total edge energy, and division by the perimeter of the 
nucleus gives the edge energy per unit length. Fig. 8 shows 
the results for a crystal with NaCl structure, calculated for 
2-16 ions, corresponding to 1-8 growth units. The 
variation of the contribution of purely electrostatic energy 
is seen to be relatively small. Including other interactions 
like Born repulsion and van der Waals forces is not likely 
to increase variations. On the other hand, λ is a free 
energy, so there is a negative contribution from entropy as 
well. Now the configurational entropy is largest for non-
rectangular nuclei, which also have the highest 
electrostatic energy; thus, variations of free energy are 
likely to be significantly smaller than those of electrostatic 
energy. Finally, we consider crystal growth not from the 
vapour, but from solution. The negative adhesion energy is 
still another important contribution likely to suppress size-
dependent variations in edge free energy of a nucleus. 
Hence there is no reason to believe that the theory is not 
consistent with experiments. 

We may notice, however, that the plot in Fig. 7 
exhibit a few deviations from strict linearity. Such 
irregularities are not uncommon in this kind of plots of 
electrolyte crystal growth kinetics. They may arise from 
certain sizes or configurations of small nuclei being 
particularly favourable or unfavourable energetically, 
yielding an edge free energy which is lower or higher, 
respectively, than the average value. An unusually strong 
manifestation of this effect was observed in heterogeneous 
nucleation of octacalcium phosphate on brushite, where 
the dependence of induction time, i.e. time lag in 
nucleation, was found to follow a distinct step function 
rather than a continuous function [48]. 
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